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Abstract

We describe a hierarchical probabilistic model for the
detection and recognition of objects in cluttered, natural
scenes. The model is based on a set of parts which describe
the expected appearance and position, in an object centered
coordinate frame, of features detected by a low-level inter-
est operator. Each object category then has its own distri-
bution over these parts, which are shared between objects.
We learn the parameters of this model via a Gibbs sampler
which uses the graphical model’s structure to analytically
average over many parameters. Applied to a database of
images of isolated objects, the sharing of parts among ob-
jects improves detection accuracy when few training exam-
ples are available. We also extend this hierarchical frame-
work to scenes containing multiple objects.

1. Introduction
In this paper, we develop methods for the visual detec-

tion and recognition of object categories. We argue that
multi–object recognition systems should be based on mod-
els which consider the relationships between different ob-
ject categories during the training process. This approach
provides several benefits. At the lowest level, significant
computational savings can be achieved if different cate-
gories share a common set of features. More importantly,
jointly trained recognition systems can use similarities be-
tween object categories to their advantage by learning fea-
tures which lead to better generalization [4, 18]. This inter–
category regularization is particularly important in the com-
mon case where few training examples are available.

In complex, natural scenes, object recognition systems
can be further improved by using contextual knowledge
about the objects likely to be found in a given scene, and
common spatial relationships between those objects [7, 19,
20]. In this paper, we propose a hierarchical generative
model for objects, the parts composing them, and the scenes
surrounding them. The model, which is summarized in
Figs. 1 and 5, shares information between object categories
in three distinct ways. First, parts define distributions over a
common low–level feature vocabularly, leading to compu-
tational savings when analyzing new images. In addition,
and more unusually, objects are defined using a common
set of parts. This structure leads to the discovery of parts
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Figure 1. Graphical model describing how latent parts z

generate the appearance w and position x, relative to

an image–specific reference location r, of the features

detected in an image of object o. Boxes denote repli-

cation of the corresponding random variables: there are

M images, with Nm observed features in image m.

with interesting semantic interpretations, and can improve
performance when few training examples are available. Fi-
nally, object appearance information is shared between the
many scenes in which that object is found.

We begin in Sec. 2 by describing our generative model
for objects and parts, including a discussion of related work
in the machine vision and text analysis literature. Sec. 3
then describes parameter estimation methods which com-
bine Gibbs sampling with efficient variational approxima-
tions. In Sec. 4, we provide simulations demonstrating
the potential benefits of feature sharing. We conclude in
Sec. 5 with preliminary extensions of the object hierarchy
to scenes containing multiple objects.

2. A Generative Model for Object Features
Our generative model for objects is summarized in the

graphical model (a directed Bayesian network) of Fig. 1.
The nodes of this graph represent random variables, where
shaded nodes are observed during training, and rounded
boxes are fixed hyperparameters. Edges encode the con-
ditional densities underlying the generative process [12].

2.1. From Images to Features

Following [17], we represent each of ourM grayscale
training images by a set of SIFT descriptors [13] computed
on affine covariant regions. We useK-means clustering to



vector quantize these descriptors, producing a finite dictio-
nary of F appearance patterns. This feature set provides
some invariance to lighting and pose changes, and was
more effective than features based on unnormalized pixel
patches [21] in our experiments.

Given this feature dictionary, theith interest point in im-
agem is described by its positionxmi and the best matching
descriptorwmi. Letwm andxm denote the appearance and
position, respectively, of theNm features in imagem. Ex-
amples of features detected in this way are shown in Fig. 2.

2.2. Using Parts to Generate Objects

The representation of objects as a collection of spatially
constrained parts has a long history in vision [8]. In the
graphical model of Fig. 1, partsz are formalized as clusters
of features that appear in similar locations, and have similar
appearance. Object categories are in turn defined by a prob-
ability distributionθ specifying which parts are most likely
to produce corresponding visual features.

Consider the generative process for an image of object
om containingNm features(wm,xm). All feature posi-
tions are defined relative to an image–specific coordinate
frame, or reference position,rm. Each object category has
its own Gaussian prior over reference positions:

p (rm | om) = N (rm; ζom
,Φom

) (1)

To generate theith feature, we first independently sample
a partzmi according to an object–specific multinomial dis-
tribution θom

over theP possible parts. Then, conditioned
on the chosen part indexzmi, we independently sample an
appearancewmi and positionxmi:

p (wmi, xmi | zmi = j, rm) = φj(wmi)×

N (xmi; rm + µj ,Λj) (2)

Each partz is defined by a multinomial distributionφz over
theF possible appearance descriptors, as well as a Gaussian
distribution over feature positions. Because the mean of this
Gaussian is shifted relative torm, we may recognize objects
whose spatial translation varies from image to image.

Although we assume the collection of objects is known,
the probability distributions defining this generative model
must be learned from training data. The hierarchical struc-
ture allows information to be shared in two distinct ways:
parts combine the same features in different spatial configu-
rations, and objects reuse the same parts in different propor-
tions. The learning process, as described in Sec. 3, is free to
give each object category its own parts, or “borrow” parts
from other objects, depending on which better explains the
observed images. As we show in Sec. 4, this sharing can
significantly improve detection performance.

When learning statistical models from small data sets,
prior distributions play an important regularizing role [4].

To simplify the learning process, we assume that these pri-
ors have a conjugate form [9]. In particular, the multinomial
distributionsθ andφ are assigned independent, symmetric
Dirichlet priors with hyperparametersα andβ, respectively.
The covariance matricesΛz of the Gaussian part position
densities have inverse–Wishart priors with scale∆p andνp

degrees of freedom, while the meansµz are given noninfor-
mative priors. Similarly, the reference position’s covariance
prior is inverse–Wishart with hyperparameters∆o andνo.

2.3. Related Models

The graphical model of Fig. 1 was partially inspired by
recently proposed models of text documents. In particular,
if position variables are neglected, we recover a variant of
the author–topic model[15], where objects correspond to
authors, features to words, and parts to the latent topics un-
derlying a given corpus. The generative aspect model, or
latent Dirichlet allocation (LDA)[2, 10], is in turn a special
case in which each document has its own topic distribution,
and authors are not explicitly modeled.

LDA has been previously adapted to discover object cat-
egories from images of single objects [17], categorize nat-
ural scenes [6], and (with a slight extension) parse preseg-
mented captioned images [1]. However, following an initial
stage of low–level feature extraction [6, 17] or segmenta-
tion [1], these models ignore spatial information, treating
the image as an unstructuredbag of words. In contrast, our
introduction of a reference position allows us to explicitly
model the spatial locations of detected features. This exten-
sion raises additional computational issues, which we ad-
dress using the EM algorithm (Sec. 3.2), and leads to im-
proved performance in detection and recognition tasks.

When modeling a single object category, our model also
shares many features with constellation models [8], partic-
ularly recent extensions which use Bayesian priors when
learning from few examples [4, 5]. The principal difference
is that their likelihood assumes that each part generates at
most one observed feature, creating a combinatorial data
association problem for which greedy approximations are
needed to learn more than a few parts [11]. In contrast,
our association of objects with distributions over parts leads
to simple learning algorithms which scale linearly withP .
In addition, by sharing parts when learning multiple object
categories, we can improve generalization performance.

3. Learning Objects with Shared Parts
In this section, we derive a Gibbs sampling algorithm for

learning the parameters of the hierarchical model of Fig. 1.
We begin in Sec. 3.1 by assuming that all objects occur at
roughly the same position in each image, so that the ref-
erence positionrm can be neglected. Many standard ob-
ject recognition datasets, as well as systems which use cues
such as motion to focus attention, satisfy this assumption.
In Sec. 3.2, we extend the Gibbs sampler by using the EM



algorithm to analytically average over the unobserved ref-
erence position. In both cases, we assume that all hyper-
parameters have fixed, known values, and that each training
image has been labeled with the single objectom it contains.

3.1. Monte Carlo Feature Clustering

When the reference positionrm is removed from Fig. 1,
the resulting hierarchical structure is similar to the Author–
Topic model, except that an additional observation (the po-
sition xmi) is associated with each part indicatorzmi. Fol-
lowing [10, 15], we learn this model’s parameters by Gibbs
sampling the part assignmentsz using likelihoods which
analytically integrate overθ, φ, µ, andΛ. These approxi-
mate samples from the posterior distributionp (z | w,x,o)
then provide estimates of the underlying parameters.

Let z̄mi denote the set of all part assignments excluding
zmi, and definew̄mi and x̄mi similarly. The Gibbs sam-
pler iteratively fixes the part assignmentsz̄mi for all but one
feature, and then samples a partzmi for the remaining fea-
ture from the induced conditional distribution. Using the
Markov properties of the graph in Fig. 1, the posterior dis-
tribution over part assignments factors as follows:

p (zmi | z̄mi,w,x,o) ∝ p (zmi | z̄mi, om)×

p (wmi | z, w̄mi) p (xmi | z, x̄mi) (3)

Let nFP
kj denote the number of times featurek is assigned to

partj by z̄mi, andnOP
`j the number of assignments of partj

to object`. Using standard Dirichlet integral formulas [9],
the first two terms of eq. (3) can be written as

p (zmi = j | z̄mi, om = `) =
nOP

`j + α
∑

j′ nOP
`j′ + Pα

(4)

p (wmi = k | zmi = j, z̄mi, w̄mi) =
nFP

kj + β
∑

k′ nFP
k′j + Fβ

(5)

Note that these probabilities are simply the raw proportions
defined by the part assignmentsz̄mi, regularized by the
“pseudocounts” contributed by the Dirichlet priors.

Given the current part assignments and the inverse–
Wishart prior, the posterior distribution overxmi is multi-
variate Student-t with (nP

j +νp−1) degrees of freedom [9],
wherenP

j is the total number of features of any appearance
assigned to partj. For the parameters used in our exper-
iments, this likelihood is very closely approximated by a
moment–matched Gaussian:

p (xmi | zmi = j, z̄mi, x̄mi) ≈ N
(

xmi; µ̂j , Λ̂j

)

(6)

µ̂j =
1

nP
j

M
∑

m=1

∑

k|zmk=j

xmk δj =
nP

j + 1

nP
j (nP

j + νp − 3)

Λ̂j = δj



∆p +

M
∑

m=1

∑

k|zmk=j

(xmk − µ̂j)(xmk − µ̂j)
T





All sums in eq. (6) exclude the featurexmi whose assign-
mentzmi is being resampled. Intuitively, this Gaussian ex-
actly matches the sample mean of the features associated
with that part, while regularizing the sample covariance by
the inverse–Wishart prior.

By combining eqs. (4, 5, 6), we may evaluate eq. (3) for
each of theP candidate assignments ofzmi, and perform
the Gibbs sampling iterations. By caching and iteratively
updating the counts used in eqs. (4, 5), as well as sums and
outer products of the positions of features assigned to each
part, this sampling update can be performed inO(P ) opera-
tions. Given a training set ofM images, each containingN
features, the total cost of a Gibbs sampling update of every
feature assignment isO(NMP ).

3.2. Inferring Reference Positions

We now consider the full graphical model of Fig. 1, in-
cluding the reference positionrm. In this case, the condi-
tional distribution needed by the Gibbs sampler is given by

p (zmi | z̄mi,w,x,o) ∝ p (zmi | z̄mi, om)×

p (wmi | z, w̄mi) p (xmi | z, x̄mi,o) (7)

While the first two terms are unchanged from eqs. (4, 5),
the uncertainty in the Gaussian parameters(ζ,Φ) causes the
position likelihood to depend on the reference position es-
timates, and hence the object labels, of all training images.
In addition, because of coupling between the parameters of
the part and reference position Gaussians, this likelihood
can no longer be expressed in the closed form of eq. (6).

While computing the position likelihood of eq. (7) is in-
tractable, it would be simple if the Gaussian prior parame-
ters were known. We therefore propose to approximate this
likelihood by finding the mode of the conditional distribu-
tion of these parameters:

(

µ̂, Λ̂, ζ̂, Φ̂
)

= arg max p (µ,Λ, ζ,Φ | z̄mi, x̄mi,o) (8)

Because the reference positions are unobserved, we use the
EM algorithm [9, 14] to iteratively compute this mode.

In the E-step, we fix the current values for the mean and
covariance parameters of eq. (8), and average over the un-
observed reference positionrm in each training imagem.
Given these parameters, the reference positions have Gaus-
sian posterior distributions, with covariance and mean

Rm =



Φ̂−1
om

+
P

∑

j=1

∑

k|zmk=j

Λ̂−1
j





−1

(9)

r̂m = ζ̂om
+Rm





P
∑

j=1

∑

k|zmk=j

Λ̂−1
j

(

xmk − µ̂j − ζ̂om

)







The sums in eq. (9) only include the feature positions from
the corresponding imagem. These expected reference posi-
tions define a lower bound on the likelihood, which is max-
imized by the M-step. GivenM` images of object̀ , the
maximizing reference position parameters equal

ζ̂` =
1

M`

∑

m|om=`

r̂m δ` =
1

M` + νo + 3
(10)

Φ̂` = δ`



∆o +
∑

m|om=`

Rm + (r̂m − ζ̂`)(r̂m − ζ̂`)
T





The part position parameters are similarly updated as

µ̂j =
1

nP
j

M
∑

m=1

∑

k|zmk=j

(xmk − r̂m)

Λ̂j =
1

nP
j + νp + 3

(

∆p +

M
∑

m=1

Λ̂jm

)

(11)

Λ̂jm =
∑

k|zmk=j

Rm + (xmk − µ̂j − r̂m)(xmk − µ̂j − r̂m)T

Note that the updates of eq. (11) are similar to the moment
matching of eq. (6), except that parts are translated by the
current expected reference position in each image.

We apply these EM updates between every Gibbs sam-
pling operation. Because the posterior mode is not dramati-
cally changed by the reassignment of a single feature, only a
single EM iteration per sample is needed for accurate mode
tracking. Conditioned on the parameter estimates produced
by the M-step, the reference positionrm has a Gaussian dis-
tribution with mean and covariance as in eq. (9). The feature
position likelihood then has the following closed form:

p (xmi | zmi = j, z̄mi, x̄mi,o) =

N (xmi; r̂m + µj , Rm + Λj) (12)

This expression is used in eq. (7) to evaluate the probabili-
ties for each Gibbs sampling operation.

Direct implementation of these EM updates requires
O(MP ) operations per iteration due to the coupling be-
tween the reference positions and parts. However, we may
reduce the cost of each iteration toO(P ) using incremen-
tal EM updates [14]. In particular, when sampling a part
assignment for imagem, we fix the expectations of eq. (9)
for all reference positions exceptrm. By caching statis-
tics of the other reference position estimates, the M–step
(eqs. (10, 11)) may also be performed efficiently. Although
we no longer find the exact posterior mode, the dependen-
cies of the reference positions in other images onzm are
very weak, so this approximation is extremely accurate.
Empirically, incremental updates produce dramatic compu-
tational gains with negligible loss of sampling accuracy.

3.3. Likelihoods for Object Detection

To use the hierarchical model for detection or recogni-
tion, we must compute the likelihood that a test imaget,
with features(wt,xt), is generated by each candidate ob-
ject categoryo. Because each image’s features are indepen-
dently sampled from a common parameter set, we have

p (wt,xt | o,M) =

∫

p (wt,xt | o,Θ) p (Θ | M) dΘ

In this expression,M denotes the set of training images,
andΘ = (θ, φ, µ,Λ, ζ,Φ) the model parameters. The se-
quence of part assignments produced by the Gibbs sampler
provides samplesz(s) approximately distributed according
to p (z | M). Given a set ofS samples, we approximate the
test image likelihood as

p (wt,xt | o,M) ≈
1

S

S
∑

s=1

p
(

wt,xt | o, Θ̂(s)
)

(13)

whereΘ̂(s) denotes the approximate modes of the poste-
rior distribution over parameters computed usingz(s) in
eqs. (4, 5, 6, 10, 11).

When the reference position is neglected, the image fea-
tures are independent conditioned on the model parameters:

p
(

wt,xt | o, Θ̂(s)
)

=

Nt
∏

i=1

P
∑

j=1

θ̂o(j) φ̂j(wti)N
(

xti; µ̂j , Λ̂j

)

(14)

This expression calculates the likelihood ofNt features in
O(NtP ) operations. To account for the reference position,
we first run the Gibbs sampling updates on the test image
features. The EM estimates of Sec. 3.2 then provide a ref-
erence position estimate which can be combined with the
likelihood of eq. (12) to evaluate eq. (14).

4. Object Categorization Experiments
To explore the advantages of sharing parts among ob-

jects, we consider a collection of 16 categories with notice-
able visual similarities. Fig. 2 shows images from each cat-
egory, which can be divided into three groups: seven ani-
mal faces, five animal profiles, and four wheeled vehicles.
As object recognition systems scale to hundreds or thou-
sands of categories, the inter–category similarities exhibited
by this dataset will become increasingly common.

4.1. Learning Shared Parts

Given 30 training examples from each of the 16 cate-
gories, we constructed a feature appearance dictionary with
F = 600 words, and used Gibbs sampling (Sec. 3.1) to fit
a model with 32 shared parts. Because the database im-
ages had been manually aligned, the EM likelihood updates
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Figure 2. Seven of the 32 shared parts (columns) learned by a h ierarchical model of 16 object categories (rows). Using two

images from each category, we show the affinely adapted featur es with the highest posterior probability of being generated

by each part. For comparison, we show the five parts which are spe cialized to the fewest object categories (left, yellow), as

well as two of the most widely shared parts (right, cyan), which s eem to model background clutter. The bottom row plots

the Gaussian position densities corresponding to each part. These object categories combine the results of web searches

with images from the CalTech 101 [5], Weizmann Institute [21] , and MIT-CSAIL [18, 19] databases. Including a complementa ry

background category, there are a total of 1,879 images used f or training and testing, with at least 40 images for each categ ory.



Figure 3. MDS embedding of pairwise distances between

the learned part distributions for 16 object categories.

of Sec. 3.2 were not needed. For our Matlab implementa-
tion, each sampling iteration requires roughly 0.1 seconds
per training image. The learning procedure showed little
sensitivity to the part distribution hyperparameters, which
were set to provide a weak (νp = 6) bias towards moderate
covariances and sparse (β = 0.1) appearance densities. The
object–specific part distribution hyperparameter,α, was set
via cross–validation as discussed below.

Following 200 iterations of the Gibbs sampler, we used
the final assignmentsz to estimate each part’s posterior dis-
tribution over feature appearance and position (Sec. 3.3).In
Fig. 2, we visualize these distributions for seven parts. Only
two parts seem specialized to a single category: a spotted
texture part used by the “leopard face” category, and an-
other part devoted to the extremely well aligned “side car”
category. The next three parts model features from animal
mouths, animal legs, and vehicles, respectively. We also
show two of several parts which seem to model background
clutter around image boundaries, and are widely shared be-
tween categories.

To further investigate these shared parts, we used the
symmetrized KL divergence [15] to compute a distance be-
tween all pairs of object–specific part distributions:

D (θk, θ`) =

P
∑

j=1

θk(j) log
θk(j)

θ`(j)
+ θ`(j) log

θ`(j)

θk(j)
(15)

Fig. 3 shows the two–dimensional embedding of these dis-
tances produced by multidimensional scaling (MDS) [16].
Except for cars, these part distances seem to closely match
our own intuitive notions of category similarity.

4.2. Detection and Recognition

To evaluate our model, we consider two sets of exper-
iments. In the detection task, we use 100 training images
to learn an 8-part background appearance model, and then
use probabilities computed as in Sec. 3.3 to classify test im-
ages as object or background. To facilitate comparisons, we
also consider a recognition task in which test images are
classified as either their true category, or one of the 15 other
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DETECTION RECOGNITION

Figure 4. Performance for the tasks of detection (left) and

recognition (right) of 16 object categories. TOP: Average

of ROC curves across all categories (6 training images).

M IDDLE : Scatter plot of areas under ROC curves for the

shared and unshared models of each category (6 train-

ing images). BOTTOM: Area under average ROC curves

for different numbers of training images per category.

categories. For both tasks, we compare oursharedmodel of
all object categories to a set of 16unsharedmodels trained
on individual categories. We also consider versions of both
models which neglect the spatial location of features, as in
recent “bag of keypoints” approaches [3, 17]. Performance
curves average over three randomly chosen training sets of
the given size, and use all other images for testing.

As shown in Fig. 4, we find that shared parts lead to con-
sistent, significant improvements in detection performance.
These improvements are greatest when fewer than 10 train-
ing examples per category are available. For the recogni-
tion task, the shared and unshared models perform similarly,
with the shared model becoming slightly less effective when
many training examples are available. Confusion matrices
(not shown) confirm that this slight performance degrada-
tion is produced by pairs of categories with very similar
part distributions (see Fig. 3). For both tasks, feature po-
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Figure 5. Extension of the graphical model of Fig. 1 to

describe scenes. Each image is now associated with a

scene s containing multiple objects, and r is a vector

defining a reference position for each object. Each ob-

served feature is produced by sampling an object o, a

part z, and then an appearance w and position x.

sitions contain important information, and neglecting them
reduces performance. Note, however, that for detection, a
shared model based solely on appearance outperforms an
unshared model of position and appearance.

The performance of the hierarchical model is somewhat
affected by the chosen number of parts. In Fig. 4, we con-
sider models with 2 parts per category (32 shared parts ver-
sus 16 unshared 2-part models). Using more parts slightly
increases unshared detection performance (at greater com-
putational cost), but the results remain qualitatively simi-
lar. The Dirichlet part distribution prior also has an interest-
ing effect on shared performance with few training images.
Smallα values reduce sharing and slightly increase recog-
nition performance, while largeα values increase sharing,
leading to improved detection. Cross–validation experi-
ments indicated that settingα = 10/P provided a good
compromise.

5. Hierarchical Models for Scenes
In Fig. 5, we show how the generative model of Fig. 1

may be extended to describe sceness containing multiple
objects. We specify the scenesm associated with imagem
as a collection of a fixed set ofOm objects (for example,
one car and two pedestrians). Conditioned onsm, one ofS
possible scenes, the2Om–dimensional reference vectorrm

provides a reference position for each object. By learning a
scene–specific prior distributionN (rm; ζs,Φs), we model
correlations between the locations of observed objects.

Each scenes is also associated with a discrete distribu-
tion ψs, which specifies the proportion of observed fea-
tures generated by each object in the scene. Givensm,
for each observed feature we first sample an object indi-
catoromi ∼ ψsm

. Then, conditioned on this object, a part
zmi and feature appearancewmi are sampled exactly as in
Sec. 2.2. The feature positionxmi is then sampled from the

chosen part, relative to the reference position for objectomi:

p (xmi | zmi = j, omi = `, rm) = N (xmi; rm` + µj ,Λj)

Here,rm` is the subvector ofrm corresponding to object̀.

5.1. Learning Object Relationships

Learning and inference in the scene–object–part hierar-
chy are natural extensions of the algorithms in Sec. 3. If
the reference position is neglected, we may directly adapt
the Gibbs sampler of [15], considering the combination of
all pairs of values of(omi, zmi) and resampling them as a
block given(ōmi, z̄mi). The reference position for scenes
may also be handled with a straightforward extension of
the EM updates of Sec. 3.2. The E-step now computes a
2Om–dimensional Gaussian distribution, in which the cur-
rent assignments of features to objects act as observations
of subvectors ofrm. In the M-step, the reference parameter
updates are essentially identical to eq. (10), while the part
parameter updates modify eq. (11) to estimate the expected
deviation of each featurexmi from the reference position of
the currently associated objectomi.

5.2. Street Scenes

To demonstrate the potential of our hierarchical scene
model, we consider a simple street scene containing three
“objects”: buildings, cars, and roads. We use 72 images
from the MIT–CSAIL database [18, 19], normalized so that
cars are at comparable scales. Of these images, 26 had la-
bels for all three categories, while the remainder only had
car labels (see Fig. 6 for examples). Note that it is straight-
forward to incorporate such semi–supervised data into the
Gibbs sampler by fixing the object labels for segmented fea-
tures, and sampling the remaining labels.

We used 40 training images, and 100 Gibbs sampling it-
erations with reference position EM updates, to learn the pa-
rameters of a scene model with 6 shared parts (see Sec. 5.1).
We then use this model to estimate the object category most
likely to have generated each test image feature, produc-
ing the feature segmentations shown in Fig. 6. The model
typically works well with images containing a single car
(top example), except when lighting affects the low–level
feature extraction (bottom example). The two middle ex-
amples have multiple cars, and thus violate our model’s as-
sumption that a single reference position explains all ob-
served car features. In such cases, the posterior distribution
over the car’s reference position is spread between the vehi-
cles, and nearby background clutter is mislabeled. Despite
this issue, we find that our model of spatial scene structure
outperforms a corresponding author–topic model neglecting
feature positions (see the ROC curves of Fig. 6).

6. Discussion
We have described a hierarchical model for scenes, ob-

jects, and parts which shares information at several levels
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Figure 6. Feature segmentation results for a model of

street scenes containing buildings (green), cars (red),

and road (blue). TOP LEFT: Two sample training images

with corresponding labelings. TOP RIGHT: ROC curves

for the detection of three color-coded object categories,

using the full model with reference positions (solid), and

a “bag of words” model based solely on feature appear-

ance (dashed). BOTTOM: Four test images with features

colored accorded to the most likely category for the ref-

erence position (left) and appearance (right) models.

when training multiple object classifiers. Our experimen-
tal results confirm the importance of spatial structure to vi-
sual recognition problems, and show that sharing can pro-
vide significant benefits when learning from few examples.
We are currently exploring richer families of scene models
which allow the number of objects in each image, and parts
composing each object, to be automatically inferred.
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